The Myogenic Regulatory Factors: Critical Determinants of Muscle Identity in Development, Growth and Regeneration
نویسنده
چکیده
منابع مشابه
Effects of in ovo Injection of Zinc Acetate on some Gene Expression Associated with Embryonic Growth and Development, and with Growth and Carcass Characteristics of the Resultant Chicks
This study was conducted in two steps to determine the effects of in ovo injection of zinc acetate (ZAC) on some gene expression associated with embryonic growth and development, and with growth and carcass characteristics of the resultant chicks. In the first step the effect of in ovo injectionofZAC on the expression of insulin-like growth factors (IGFs:IGF-I and IGF-I), myog...
متن کاملMolecular regulation of determination in asymmetrically dividing muscle stem cells
Asymmetric cell division is a conserved mechanism to generate progeny with divergent fates. In the context of somatic stem cells, it provides a mode of selfrenewal that retains the stem cell identity of one daughter cell while producing another daughter cell that is committed to differentiation. This allows for a balance between the requirement for committed progenitors during regeneration and ...
متن کاملType I insulin-like growth factor receptor signaling in skeletal muscle regeneration and hypertrophy.
Skeletal muscle is able not only to increase its mass as an adaptation to mechanical loading generated by and imposed upon muscle but also to regenerate after damage, via its intrinsic regulation of gene transcription. Both cellular processes, muscle regeneration and hypertrophy, are mediated by the activation, proliferation and differentiation of muscle satellite cells and appear to be modulat...
متن کاملTEAD transcription factors are required for normal primary myoblast differentiation in vitro and muscle regeneration in vivo
The TEAD family of transcription factors (TEAD1-4) bind the MCAT element in the regulatory elements of both growth promoting and myogenic differentiation genes. Defining TEAD transcription factor function in myogenesis has proved elusive due to overlapping expression of family members and their functional redundancy. We show that silencing of either Tead1, Tead2 or Tead4 did not effect primary ...
متن کاملSonic hedgehog regulates angiogenesis and myogenesis during post‐natal skeletal muscle regeneration
Sonic hedgehog (Shh) is a morphogen-regulating crucial epithelial-mesenchymal interactions during embryonic development, but its signalling pathway is considered generally silent in post-natal life. In this study, we demonstrate that Shh is de novo expressed after injury and during regeneration of the adult skeletal muscle. Shh expression is followed by significant up-regulation of its receptor...
متن کامل